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SUMMARY

A technique is presented for the estimation of airplane longitudinal stability
and control derivatives over a broad range of angle of attack using data from a
single large amplitude longitudinal maneuver. The application of a modified stepwise
regression algoritim to both a complete data string and to that same data partitioned
into bins as a function of angle of attack is demonstrated. Results fros the large-~
scale maneuver agree well with results from 20 maneuvers in which small perturbations
from trim at various angles of attack were induced.

INTRODUCTION

There has been considerable interest recently in the poststall and spin flight
regimes of airplanes. The inherently nonlinear nature of the aerodynamic forces
and wmoments of these flight regimes create difficulties for both the design of
flight test programs and the application of parametexr extraction algorithms. Though
interest and attention have been high, no consistently reliable method of para-
metric model identification which can be applied to the transient data collected from
stall/spin/high~a (angle of attack) maneuvers has been developed. It is important
to be able to build an airplane mathematical model that encompasses all operating
regimes. Hence, one must find a method of extracting information from the sghort-
lived stall/spin/high-~a maneuvers in order to confirm a given model or build a new
model for predicting airplane behavior.

The identification of airplane stability and control parameters across a broad
range of flight conditions can be tedious and costly in manpower, computer time, and
in-flight time, Movxeover, parameters cannot be identified by traditional methods in
all flight regqimes. In particular, near stall (both prestall and poststall) regimes
and spin entry reyimes are often too transient (short lived) to provide encugh data
for analysis by existing technigues. 7This paper offers a new application of the
stepwise regression technique that promises to be useful in previously nonidentifi-
able flight regimes.

The usual method of parameter identification from flight test consists of first
trimming the test airplane to some given equilibrium flight condition (such as
@ =8, ¥V, =P, =q," ¢o 8}« 'Then one or more control)l surfaces {(viz,
elevator, rudder, alleron? are activated slightly but sharply from their trim posi~
tion and back to that pogition. The resulting motion of the airplane is recorded
along with the control movement. The data string for such a maneuver is usually 5
to 15 gec long. At data rates of 20 points/sec, the experimenter will then have
100 to 300 points to analyze.

Unfortunately, it is not possible to trim a given airplane at all angles of
attack. Moreover, the passage through certain flight regimes is so fleeting that
only a few data points are available. In regions where the airplane can be trimmed
and the typical maneuvers can be performed, there is a need to know which of
the regions provide the most interesting and perhaps nonlinear behavior and hence
require the closest scrutiny.

These problems can be solved, as this paper demonstrates, by judiciously using
the data obtained from several large amplitude maneuvers. It is shown that For large



amplitude longitudinal maneuvers initiated from ao = 2.3°, one can discern informa-
tion on the behavior of the airplane in several regions of angle of attack. In this
way transient behavior can be analyzed as to tentative model structure and parameter
values.

Though the linear model of the airplane is sufficient for small perturbations
from equilibrium conditions at low angle of attack, there is little known of the
proper aerodynamic model at higher angle of attack. Xlein has shown in reference 1
that at high lift coefficient CL' the linear model is inadequate for a general avia-
tion airplane. 1In the general case of large excursicon in the state variables or
coupling between angle of attack and lateral motion, Thomas has postulated a need for
a nonlinear aerodynamic model. (See ref. 2.)

The maneuvers treated in this paper involve, by their intent, large excursions
in a. Such large excursions then encompass regions ¢f both high and low Cy+ Hence
part of the identification process raquired in this work is that of model structure
determiration.

The determination of model structure consists of two baric requirements:
1. Is a linear model adequate?

2. If the linear model is not adequate, which nonlinear terms must be included
to provide an adequate model?

Requirements 1 and 2 are addressed by a modified stepwise regression procedure. The
stepwise regression is used to enter variables into a regression equation one at a
time. The modified stepwise regression considers only the lirear model terms first,
after which all candidate nonlinear terms are considered. Upon entry of a nonlinear
term, superfluous linear terms may be deleted from the model.

The first section of this report deals with the stepwise regression as it is
applied to the airplane identification problem. Next, the results of the data anal-
ysis are discussed in detail. And, finally, a concluding section summarizes the data
analysis and interprets some of the programmatic aspects of the technique used. Taie
equations of motion are presented in an appendix.

SYMBOLS
b span, m
Cy. lift coefficient, L/&S
C1 rolling-moment coefficient
Ca pitching-moment ceoefficient, My/ESE
C; defined in appendix
¢, yawing-moment coefficient
Cx longitudinal-force coefficient, Fx/as
Cy side~force coefficient, Fy/as



(o normal-force cvefficient, Fz/as

c mean aerodynamic chord, m

E( ) expectation value

FP partial statistical F-value, standard errors

FyoeFy.F, force along X, Y, and 2 body axis, respectively, N

g acceleration e to gravity, m/sec2

Iy.IyeI, moment cf inertia about X, Y, and Z body axis, respectively, kg-m2

Ixz product of inertia, kg-m2

J error metric

L lift, N

MSR mean sguare due to regression

MY pitching moment, N-m

m mass, kg

N number of data points

p body axis roll rate, rad/sec

q body axis pitch rate, rad/sec

a dynamic pressure

r body axis yaw rate, rad/sec

rx.y correlation coefficient between xj and vy

ryi — correlation éoefficient.between fk and y given that xj, Xor
k jmp and xp are already in regression

S wing area, m2

ti ith time interval

u,v,w velocvity along X, Y, and Z body axis, respectively, m/sec

v airplane total velocity, m/sec

X N x P matrix of N measurements of P model variables

x; ith independent model variable

X. . ijth element of X
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<>
y N x 1 vector of N measurements of dependent variable
a angle of attack, rad or deg, as appropriate
« mean value of angle of attack for a bin, deg
ai value of a at ith measurement, rad
B angle of sideslip, rad (Ge produces nose~up pitching moment)
Aa, =a, - &, rad
i i o
6e elevator deflection, rad (standard sign convention)
*
€ N X 1 error vector
2] pitch angle, rad
5 P x 1 parameter vector
+
Gi ith element cf B
ol air density, kg/m3
¢ bank angle, rad
Subscript:
o trim value
Supercripts:
T transposed matrix
. derivative with respect to time
Derivatives:
ac_ 2%c_ ac,
Cm - - Cm - - cm Y
q dq c/2v gx 0Oq da c/2V a
acm acm
c = cC =5
e 3q o/2v ms 20
a e
2% 2% a3
c N c -1 _m c =4
L bbe da mﬁz 2 aB2 m82a 2 3 aﬂz

dependent variable
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MODEL SELECTION AND PARAMETER ESTIMATION

A stepwise linear regression was applied to the data for both model selection
and the estimation of the parameters comprising the model. A general discourse on
regression {equation error) techniques is found in reference 3. The stepwise pro-
cedure employed for this report is basically that given on pages 178 through 195 in
reference 4. In general, a probabilistic parameter estimation method such as maximum
likelihood is preferred to a regression method. However, as part of the analysis for
this report, the data were partitioned, destroying its continuous dynamic properties
over more than a few points. Hence, such probabilistic methods were not applicable.
Moreover, if the model be correct and model variable measurement error small, the
regression techrnique gives reasonablz results. (See ref. 1.)

System identification is divided by Zadeh (ref. 5) into several major
areas. Two areas that this report considers are model selection and parameter
identification.

In the standard linear regression technique, a measured quantity, vy, is
expressed as a function of several independent variables, xy (i=1 2., P), and
multiplicative coefficients, Gi (i =1, ..., P), as

=0 +8 )
y RS T SRS L Tt * 8% (N

Equation (1) is derived in the appendix where y corresponds to an aerodynamic force
coefficient or moment coefficient; the variables x; correspond to the model
variables a, gq, §g, and their combinations; the coefficients 6; represent the
aerodynamic stability and control derivatives such as Czu' Czq, Czde' cma’

Cmq' and CWG . If measurements are made on all variables at times t1, t2, seey tN,
e

then equation (1) can be written as N independent equations:
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which can be summarized in the matrix equation:
>
y = xb (3)

EY

where y is an N X 1 vector of the N measurements of the dependent variable,
X is an N X P matrix whose jth column contains the N measurements of the
jth model variable, and is a P x 1 parameter vector (unknown).

Because of error associated with the measurement of Yo the linear combination
of model variables may not faithfully represent the system. Hence, one must associ-
ate an N X 1 error vector € with equation (3) to give

y=xb+¢ (4)

>
where € is referred to as the "equation error" and often lends that name to the
linear regression method. If € is stationary white, zero mean, and the ele-
ments of X are measured without error, then the regression technique gives

A -1 -
unbiased parameter estimates 6 = (xTx) X*y when the cost function

ST+ > 372 3y is minimi i
J=¢ €= (y - X0) (y - X0) is minimized with respect to §. That is,

E(ETX) = 6 is desired. To achieve this, one must have the correct model pcstu-
lated in equation (1). Usually, for small longitudinal perturbations, a simple
linear model, incorporating only the model variables a, q, and ée, will suf-
fice. However, for larger perturbations from equilibrium flight and/or for high
CL’ it has been shown that certain nonlinear combinations of the model variables
might be required. (Se~ ref. 1.) 4

Candidate combinations of the model variables are listed in table 1. The candi-
date model variables consist of the linear terms a, q, and 6e and certain
nonlinear terms. The first three nonlinear terms are a2, ag, and ad, which yield
parameters corresponding to the slope of the linear parameters with respect to a.
Next, two terms which account for symmetrical coupling of the longitudinal motion
with sideslip (viz, B2 and B2a) are consid. ‘ed. Finally, since the longitudinal
motion is generally most dependent on &, the nigher order terms 03, cesy a8 are
included. If all the candidate variables listed are included, another problem is



created: the (XTXI matrix is singular and 8 Qoes not exist. Therefore, one must

include enough variables tc postulate the correct model E(ETX) =3 but not so many
variables that [X"X] is made singular.

It is desirable then, to add variables to the model, one at a time, until the
model is correct. A stepwise regression does exactly that. In a stepwise regres-
sion, the equation error is decreased in "steps" by adding the independent model
variables to the model one at a time. One begins the procedure by postulating a one
parameter model

where 91 is simply the mean of the data. A tableau of candidate independent model
variables, Xor Xqq eses Xp is available. The tableau for the airplane longitudinal
equations of motions is given by table 1.

Next the correlation coefficients

N
Z% *53%3

l=

r =
X.y
3 X o2 2
q Z X1 2 ¥

i=1 i=1

are calculated for each x; (3 = 1, ..., P). Then the x. corresponding to the
greatest rxjy is selected to enter the regression. Now the model is

34

3-8, r0.% +

Next, the correlation coefficient for each remaining x, (i = 2, ..., j=-1,

i
3+1, +.., P) is calculated on xj and ; where y = 91 + 9j§j' The corre-
lation coefficient is
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12"—
r oy =
%5 X 5 -6.)2 ~ \2
p (xik = %3585 - 1) P2 (Yi - Yi)
= =4



tyx o~ is read the partial correlation of y on x,  given that %y is in the
k 3
regression.
The Xy giving the largest value of r . is selected and entered into the
model. The model is now 8" 3

y o= 61 + O.x. + ekxk

Again a partial correlation coefficient, Tx ¥ % 5%y is calculated and the X,

giving the largest rxly’xjxk enters the model. 7This process continues until the

remaining candidate variables offer no statistical improvement in the model at a
level of significance selected by the user.

At each step of the regression, one has several piecas of information avail~
able. First, the wost obvious is the model structure. Second, there iz a least-
squares estimate of the parameters for each model selected. Third, the F-value of
significance can be calculated by

Fourth, a partial F value F, given by

rys *x

~N“a-l~ ij

P m-11~1
Y, xj

F

is calculated giving the relative statistical significance of each variable in each
model, given that the othexr variables are present.

The stepwise regression used for this analysis differs slightly from that in
reference 4. Hence, it is required that the linear model {that model containing only
@ dq, and Og) be fit first and the nonlinear terms considered next. This con~
straint allows the user to view the linear model performance before searching for a
more complex model.

The best model is chosen as the one correspouding to the largest total F-value.
If that peak is not clear, then the set of Fp's is searched on several of the
better candidate models to choose the most consistent and parsimonious model.

Sim.lated data created from a nonlinear model at high angle of attack have borne
out these methods. With no nnise on either the dependent or independent variables,
the correct model was selected and correct parameter values identified. With noise
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on all variables (worst case), the procedure selected the correct model structure in
the rolling~ and yawing-moment equations. In the side-force equation, two of the
nonlinear terms were not selected in the presence of noise; however, no term that d4id
not appear in the true model was selected either. Hence the technique selected, at
worst, a parsimonious model and, at best, the true nonlinear model.,

DATA ANALYSIS

The data were obtained from a low wing general aviation airplane with a modified
wing leading edge. Because of the leading-edge modification, the test airplane could
be trimmed at angles of attack that were well above the stall angle of the unmodified
wing. Taking advantage of this large range of trim angle of attack, two major data
sets were created.

The first data set consists of the results of 21 transient small amplitude
longitudinal maneuvers initiated from steady-state flight conditions. The trim
values for a in these 21 maneuvers varies from 2.3° to 20.2°. 'These small ampli-
tude maneuvers were analyzed with respect for the normal-force and pitching-moment
coefficients. The parameters, Cz , Cy . Cgc s+ Cp.r Cm.. and Cf, , extracted

a q be a q ba

from the 21 small amplitude maneuvers are plotted in figure 1.

The second data set consists of several maneuvers made from steady-state flight
trimmed at angles of attack of about 2°. Froum this trim angle, a large elevator
pulse was initiated, resulting in a large excursion from the trim «. A comparison
of such a large control input and its resultant a deviation with a typical small
control input (from the 21 small amplitude runs) and its a deviation is depicted in
figure 2.

The second gset of data was then analyzed in two ways. In the first analysis,
the entire data length from a particular maneuver was analyzed by using the stepwise
regression. This technique is the same as the one that was applied to the 21 small
amplitude maneuvers. The results of this analysis for two particular large mareuvers
{run 18 and run 19) are given in figures 3 and 4. It is seen in the figures that
trend lines (dashed lines) have been extrapolated from the trim value of that param-
eter to higher a values. The trend line reflects first derivative values of the
parameter (such as czqa and Czaz) that were selected by the stepwise regression.

A comparison of these trends with the small amplitude maneuver parameter ~stimates is
seen in fiqures 5 and 6. The trend lines linearly interpolate the small amplitwde
data very well. The trend information is not chosen for all parameters ir all
maneuvers. In such cases, the trend line is represented by a horizontal [(rajectory
signifying a zero slope for that parameter with a.

To improve upon the trend information or rather to achieve a better resolution
of the fine structure of the parameter as a function of a trajectories, a second
method of analysis was applied to the large amplitude data.

In this second method, the data from each maneuver were divided into bins as a
function of «. That is, all measured data corresponding to 0 < a < 4° were put
into the first bin. Drta corresponding to 4° < a < 8° were put into the second bin
and so forth until six bins each of 4° width were filled. Then five new bins for
2° < a < 6°, €6° < a < 10°, and so forth, were created and filled with the corre-
sponding measured data. The number of data points and the mean a value of those



points are given for each bin for runs 18 and 19 in table 2. Each bin was analyzed
by using the stepwise regression and the results are given in figures 7 and 8. The
4° bin width as chosen as # means of including enough data in each bin but also to
restrict each bin to as small a range of @ as possible. The smallest range of a
prevents data from several regions of aerodynamic behavior from dilutino cne another.
With greater data rates or longer maneuvers it might be possible to make evan more
narrow bins.

The results of the bin analysis are overlaid with the small amplitude analytis
and the entire large amplitude analysis in figures 9 and 10. The solid circles
represent the parameter value extracted for a given bin and is plotted at the
mean & for the points in that bin. For certain bins, no linear parameter was
extracted; hence not all bins have a representative parameter value. However, cer-
tain bins yielded trend information, as in the analysis of the entire data length.
The trend lines, where available, are plotted at the mean value of a for the points
in that bin. One sees that though the entire run analysis can give a general trend
in the parameter behavior at higher a, the partitioning of the data into bins
provides a fine structure about that trend. Hence more information can be extracted
from the same data by dividing it into bins than by simply analyzing the entire data
length.

The ordinate value at whicn a slope line is plotted in this report is determined
by extrapolating the ordinate values of previous bins to achieve a reasonable place-
ment. The temptation to treat the ordinate value as equal to zero in cases where
only a slope is identified must be suppressed since zero is not the "best" value for
the ordinate but rather represents the value most compatible with the best overall
model. Because of correlation among the variables in the adequate model, the ordi-
nate value need not be included as a parameter in the best model in certain cases.

An example will better explain the previous paragraph. Consider the binned

results for Cz of run 19 as shown in fiqure 10(a). If one considers the equation
q

C =0 + Cz (a - ao)
q qa

and, for example, the 12° to 16° bin (a = 14.4°) of run 19 would give

(9]
il

Z 0 - 1.82(14.4° - 2.3°) = =22.0

when such a fecrmula is used, one develops the plot for CZ against a shown in
figure 11. q

Certainly it is better to use the additional i.formation provided by the sur-
rounding bins (as in figs. 9 and 10). However, it is better still to develop an
analytical expression to incorporate the ordinates and slope information from sur-
rounding bins into an optimal polynomial fit through all points, obeying the given
slope information. The development of such an expression is currently being studied.

10



DISCUSSION

For the normal-force equation, it is seen in fiqures 9(a) and 10(a) that Cg
can be extrapolated from -4.3 a. a ® 2.3° to ~1.3° at a = 20° by simply using

32Cz/8u2 = 2C from the large maneuver entire data length. This general trend

Z a2

corresponds to the Cza values extracted from the small amplitude trausient maneu-

vers. However, the behavior between these end points is only approximated by s.ch an
analysis. The finer kehavior is washed out by the averaging of all the data. Wwhen
one bins the data, it is seen that the trend from trim to about a = 7° isg a

slow increase, then a rapid increase in Cy between a = 7° and 12°, and again a
slower increase from o = 12° to 20°. A similar behavior is seen for Czq. More-
over, for both runs 18 and 19, it is seen that slope information Czqa is

< :tracted from certain bins. The slopes are plotted about the mean & for their
respective bins. In run 18, one sees that the j;lope crosses the overall trend line

between a = 7° and 11° reinforcing the informatioa from Cza that the system

behavior is chang.ng most rapidly in this region. FRun 19 gives the general decrease
in slope Czqa after its maximum decrease at a * 9.5°. For Czg + the entire run
e

analysis gives no nonzero CZS a value. This is represented by the zero clope line
e

in figure 10(a). Though the bins of run 19 provide no additional irformation, run 18
bins provide a slope CZ6 a at 8.7¢° and shows that Cz6 is about constant at -0.8
e e

from «, to about a = 8¢, and then Czg  stays constant at about -1 from a = 9°
e
to 20°. The standard error at hidch « makes an exact measure of c26 impossible.
e

For the pitching-moment coefficient equation, one should r ‘er to figures 9(b)
and 10(b). The aralysis of the entire data length of run 18 failed to give any
nonzero trend informatien for any of the pitching-moment derivatives. This is noted
by the horizontal lire representing a zero slope trend. The analysis of the entire
data length for run. 19 g '~ trend lines for Cﬁa and Cﬁt. By binning the data,
one gees the interesting fine structure in run i8 for Cﬁa. The derivative C&a is

seen to be reasonably ustant from d, to about 8°. Between a = 8° and 12°, Cj

drops rapidly, steadies from a = 12° to 15.6° and then rapidly decreases as shown
by the exiscence of Cﬁaz for twc bins between a = 16° and 20°. Though rot as

visible, the run 18 behavior is not contradicted by run 19 binned analysis.
The variation of Cﬁq about the overall trend line for run 19 ghows a rapid
increase in Cﬁq between a = 4° and 10° in that the binned trajectory cross the

trend line in that region. Run 16 adds no new information but also does not
contradict run 19. The derivative Cﬁs is shown, in the binned analysis of run 19,
e
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to have a constant value of about -1.95 from @, tc a = 7° after which it
increases between a = 7° and 10* for a new constant value of about -1.6. This
behavior, especially in rugions of change, is consistent with the behavior of the
other derivatives in both the binned dita and the 21 small anmplitude maneuvers.

One final aspect of the application of the stepwise regression for both large
and small amplitude maneuvers performed over a large range of trim angles of attack
is shown in figure i1. One can take the average excursion in a to be given by

N

-!} E (lmi)2 where Acy is a; - ag fcr the ith value of @ in a data string for
i=1

a given run. The number of terms selected for the optimal model ia stown as a func-

for the Zt small amplitude maneuvers and the large

N
tion of % 2: (Aa.)2 and ¢
i=1 1 °

amplitude maneuvers.

In the semilog plot in figure 12, points where linear models suffice are repre-
sented by circles. Maneuvers which rejquired nonlinear models are denoted by squares.
The number in the circle or square is the nuimber of terms present in the adequate
model. A line separates the plane into two sections. Below the line one finds that
a linear model is generally adequate. Bbove the line, generally a nonlinear model i3
required. From the plot one sees that justification of a linear model depends both
on the excursion from a, and the behavior of the system in the neighborhood of ag .
Hence even at large a,, a linear model suffices for an airplane with a reasonably
linear lift curve at that a. Also, at low «,, a nonlinear model is required if the
excursion from a, is large.

CONCLUDING REMARKS

It has been shown that information regarding the behavi~r of an airplane at high
angles of attack exists in data that results from large amplitude longitudinal maneu-
vers from a low trim angle of attack. A technique has been demonstrated which allows
for the determination of overall trend lines indicating the mean behavior of the
longitudinal linear stability and control derivatives over a large rangje of angle of
attack. Though this trend line can be useful for gross estimates of airplane behav-
ior at high angle of attack a, a technique of partitioning the data string was shown
to give some fine s*tructure and detail about the trend lines. These detailed esti-
mates from partitioring were shown to be reliable in that they agree with estimates
using small perturbation from trim condition in certain regions.

The partitioning is especially useful to detect regions of rapid change in
parameter values. The regions are usually indicated by the significant contribu- :>n
of one or more nonlinear terms into the model. These transient regions are areas
that should be more closely investigated by further flight tests. They cculd be
interesting areas of nonlinear behavior involving multiple states or hysteresis.
FPuture research should include means of extracting still more information from these
"transient data" regions.

The modified stepwise regression, as presented, has been shown to be reliable in
choosing an adequate model. Because it does not test all possible models, one is not
assured that he has the absolute best model. However, work with simulated nonlinear

12



models has shown that the model chosen, even under noisy flight conditions is ade-

quate. Future work should include development of an information criterion for a best
model.

Finally, it was shown that in some regions the linear model is the best model,
but that over a broader range of flight conditions, a nonlinear model is required.
Moreover in certain regions of trim angle of attack a, even for small perturbations
from trimmed flight, a linear model is inadequate for stability and control analysis.

The techniques presented in this paper show promise for the task of model struc-
ture determination and analysis of flight data from transient flight regimes. The
future development of information criteria and experience developing a better set of
candidate model variables will enable the user to better anaiyze data from transient
maneuvers such as are found in prestall and poststall regimes.

Langley Research Center

National Aeronautics and Space Administration
Hamptor.. VA 23665

August 17, 1981
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APPENDIX

EQUATIONS OF MOTION

The following equations of motion are given in this apperdix.

2
° . pvV'S
= + - 6 + —
u —qu v g sin . Cx
2
y . pv's
= -ru + + 9 + c
v ru pw g cos sin ¢ >m Y
2
y Vs
== + + 0 +
w pv qu g cos cos ¢ o Cz
I. -1 I
p=qr1Y >+ XZ(pq+r)+pVSbc
I I 21 1
X / X X
T -1 \ I -
* Z X 2 v
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Z Z 4
8=qcos ¢ - r sin ¢

e
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p+ (g sin ¢ + r cos ¢) tan B
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u u
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APPENDIX

where
_ gc g¢
= + - + + § - + -
Cz Cz,o CZ (a ao) CZ 2V CZ ( e Ge,o) Cz (a uo)2V
a q Ge qa
2 2
+C, (a=-a ) +C (a =a (8§ -8 ) + ¢C (B -B)
Z 2 o 2 [ e e,o Z,2 o
a S a 8
e
2 3 4
+ - - - + -
cz 2 (8 BO) (a ao) + cz 3(0. ao) c, 4(a ao)
8 a a a
5 6 7 8
+ Cz 5(a - ao) + cz 6(0 - ao) + cZ 7(0 - ao) + cz 8(a - ao)
a a
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2 2
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¢ cm Cm' 4m Cz
qa qa a qo
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APPENDIX

pSc
' = + = c
Cn 2 Cm 2 Cm° 4m Z 2
a a
C; = Cm + Cm' i:c cZ
‘5 a § a § a
e e e
pSc
(5N = C + C — C
mBZG meza ma 4m ZBZa
pSc
. = + — C
(182 CmBZ Cm& 4m 282
pSc
~ - + .
“m i cm i Cm° 4m CZ i

Assuming steady-state vy = Pg = 4p = Yo = $o = 0) initial flight conditions the
longitud¢inal equations become

2

¢ PV S

= - - in 8§ + —/—
u qw g sin m Cx

2
. vV S
w=Ju + g cos 6 + e Cz
2_
& . BV Sc _,
ZIY

[
& =q

and the longit- iinal output can be written as

1
= —(u + + in 6
ay g(u qw g sin 9)
a_ = l’& - qu - g cos 8)
z 9
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and for the equation error form, the aerodynamic coefficients can be written as

22 ay = S
oves
2gm_

232 =6
oves

2

I, . '
2-9°¢€
ovesc
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TABLE 1.- CANDIDATE MODEL VARIABLES

a a2 g2 a3
Jd aq B2a ad
be adg ad
ab
a?
a8

TABLE 2.- @ AND NUMBER OF DATA POINTS PER BIN

Run 18 Run 19

a bin - —
a N Qa N
0° to 4° 1.8 147 1.53 113
2° to 6° 2.8 136 3.1 116
4° to 8° 6.3 40 6.6 83
6° to 10° 8.7 72 8.1 128
8% to 12° 9.9 20 9.5 114
10° to 14° 11.5 56 11.9 56
12° to 16° 14.6 37 14.4 32
14° to 18° 16.3 43 16.7 34
16° to 20° 18.0 35 18.6 46
18° to 22° 20.6 21 20.1 38
20° to 24° 23.6 16 23.0 1M
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(a) Z~-force coefficients.

Figqure 1.- Aerodynamic coefficients from small amplitude maneuvers.
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Figure 1.- Concluded.
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Figure 3.- Concluded.
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O  Small amplitude maneuver
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Figure 5.~ Comparsion of aerodynamic coefficients from run 18 and small

amplitude maneuvers.



28

m,
L |
rad'1
-2
0
c
Mg 10
rad-1
-20
0
Cma ,
€ -2
_1 =
rad
-4

A~ —— From entire run
(o] Small amplitude maneuver

o © s)
A -0 O0Op-———————— e ————————
O
OO 00
o o o° %
0]
(@]
| | I | i 1
O
O
O o
o © CK)Ct> C O
A———————— o R —
O
0] OOO
o ©
| | 1 1 L J
°c @ % 000
(o) O O
& o-o0-—=0o0&° _ - o .
! | | i L
4 8 12 16 20
a, deg

(b) Pitching-moment coefficients.

Figure 5.- Concluded.



0r QO Small amplitude maneuver
A~—=— From entire ryn
’/
-
Cy @ %o o.*
a P
-1 2F Polg
rad Q)./’/
OC)—“’
,/
>
4l ,/,0 OO
L 3491'0 L I | I j
0~
‘\O\O\O
Cy s ~2, 8,
9 -0t T~
-1 0 -~
rad O cp \\\\
O O o0 \O\\O\
o] O o ~
-40 L
L i ] | | L 1
0 ——
O
C O
Zg° ©_0o Q00 0 O__0__Q
N R ==L 0T T T T T T
rad-1 0 O o
R
L | ] | | 1 }
¢ 4 8 12 16 20 24
a, deg

(a) 2-force coefficients.

Figure 6.~ Comparison of aerodynamic coefficients from run 19 and small
amplitude maneuvers.
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O  Small amplitude maneuver
&-—- From entire run

0r
A °
~=--<900o0
C' - ‘O“-“s-
m(; “““‘s
- -1+ OO = -“\_5“
rad 1 0 OO 0o -
O O
O
2L 9]
[ | | | 1 | J
T
o 0]
o Co —
c, o __2%e —-0--0
m_’ e e ——
1, -0 Sy
rad A-—" 0]
O_ o
O O
o O
=20 -
l J 1 [ ] 1 J
Or
C' 0]
mg ’ O O ©° 0o 0O
5 0 oo® o
fa -2 - Qb—Tf-CT"--<}*3;gt*‘ ————————————————— —_—
rad
-4 L
L 1 | ] 1 1 }
0 4 8 12 3 20 24
a, deg

(b) Pitching-moment coefficients.
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Fiqure 7.- Aerodynamic coefficients from binned run 18.
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Figure 8.- Rerodynamic coefficients from binned run 19.
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(a) 2-force coefficients.

Figure 9.~ Comparison of aerodynamic coefficients from run 18 and small
amplitude maneuvers.
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Small amplitude maneuvers
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Figure 10.- Comparison of aerodynamic coefficients from run 19 and small
amplitude maneuvers.
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